Exposure to sexism can decrease implicit gender stereotype bias

Miguel R. Ramos*†, Manuela Barreto†‡, Naomi Ellemers§, Miguel Moya¶, Lúcia Ferreira† & Jimmy Calanchini**

* University of Oxford, Oxford, UK
† Lisbon University Institute (ISCTE-IUL), Lisbon, Portugal
‡ University of Exeter, Exeter, UK
§ University of Leiden, Leiden, The Netherlands
¶ University of Granada, Granada, Spain
** University of California, Davis, Davis, California, USA

Keywords: sexism, stereotyping, implicit bias

Gender stereotypes remain prevalent, among both women and men, across a variety of contexts (for reviews, see Rudman & Glick, 2008; Swim & Hyers, 2009). Such stereotypes are problematic: not only do they influence how men and women are treated, but they also affect both men’s and women’s well-being and performance in gender stereotypic domains (for reviews, see Barreto, 2014; Schmader, Hall, & Croft, 2014). Previous work examining the impact of sexism on gender stereotypes has mainly investigated how sexism influences women’s explicit endorsement of gender stereotypes (e.g., Ellemers & Barreto, 2009; Kray, Thompson, & Galinsky, 2001). Our aim in this paper is to extend past work by examining the effect of exposure to sexism on men’s and women’s implicit gender stereotypic associations.

The Malleability of Gender Stereotypes

Early theorizing on implicit bias proposed that it results from automatic processes that are difficult to change (Bargh, 1999; Devine, 1989). Subsequent research, however, provided evidence that implicit stereotype bias can be quite malleable (e.g., Blair, 2002; Dasgupta & Greenwald, 2001; Kawakami, Moll, Hermens, Dovidio, & Russin, 2000; Lenton, Bruder, & Sedikides, 2009; Rudman, Ashmore, & Gary, 2001; Wittenbrink, Judd, & Park, 2001). For example, Blair and Banaji (1996) demonstrated that implicit gender stereotype bias was affected by whether male and female names were preceded by gender consistent or inconsistent primes. Building on these findings, researchers have identified various processes underlying malleability in implicit evaluations (for reviews, see Blair, 2002; Dasgupta, 2009; Gawronksi & Bodenhausen, 2006; Gawronski & Sritharan, 2010; Lai, Hoffman, & Nosek, 2013; Sritharan & Gawronski, 2010). For example, Dasgupta and Rivera (2008) showed that gay bias was more malleable among individuals who had less (vs. more) contact with gay individuals, suggesting that malleability in implicit bias can be stronger when attitudes are less elaborated (also Dasgupta & Asgari, 2004). Research has also shown that implicit racial bias may change owing to shifts in emotional states (Dasgupta, DeSteno, Williams, & Hunsinger, 2009; DeSteno, Dasgupta, Bartlett, & Cajdrie, 2004), exposure to counter-stereotypical exemplars (e.g., Dasgupta & Greenwald, 2001) and the activation of egalitarian goals (Legault, Gutsell, & Inzlicht, 2011; Mann & Kawakami, 2012). Other contextual factors that have been shown to affect implicit biases are experimental task instructions (Blair, Ma, & Lenton, 2001), characteristics of the evaluated targets (Barden, Maddux, Petty, & Brewer, 2004), egalitarian norms (Moskowitz, Wasel, Gollwitzer, & Schaal, 1999) and the attitudes of others present in the experimental context (Lowery, Hardin, & Sinclair, 2001).
Some of these variations in implicit bias have been attributed to the contextual salience of specific identities or stereotypes, whereas others have been attributed to motivational factors (e.g., Amodio, Devine, & Harmon-Jones, 2008; Devine, Plant, Amodio, Harmon-Jones, & Vance, 2002). Importantly, recent research has clarified that cognitive and motivational factors often work in tandem, as motivational processes can modify how information about targets is processed (Van Nunspeet, Ellemers, Derks, & Nieuwenhuis, 2014).

In addition, recent research has clarified that measures of implicit bias reflect the influence of both relatively automatic and relatively controlled processes (Conrey, Sherman, Gawronski, Hugenberg, & Groom, 2005; for a review, see Calanchini & Sherman, 2013). That is, these measures capture both biased stereotypic associations, which are activated relatively unintentionally, and processes that constrain the expression of these biased associations (Fiedler & Bluemke, 2005). Thus, responses to implicit measures can be subject to control and therefore vary across contexts that affect individual motivation to control bias (e.g., Klauer & Teige-Mocigemba, 2007; Teige-Mocigemba & Klauer, 2008).

The Present Research

Although research has shed light on some of the conditions that affect implicit bias, whether and how exposure to sexism affects implicit bias remain unexamined. Our goal in this research was to examine whether exposure to sexism would provide participants with sufficient motivation to reduce implicit gender stereotype bias and thereby disprove sexism views.

Although the effect of exposure to sexism on implicit gender stereotype bias has yet to be examined, prior research has made clear that women are often motivated to explicitly disconfirm gender stereotypes when these are made salient (e.g., Cihangir, Barreto, & Ellemers, 2010; Ellemers & Barreto, 2009; Kray et al., 2001). To examine whether this can also happen at the implicit level, we exposed participants to sexist beliefs (vs. not) and then measured their implicit gender stereotype bias. If exposure to sexism motivates individuals to be less biased, we would expect that participants who are exposed to sexism would display less implicit bias than participants who are not exposed to sexism—despite the fact that gender stereotypes are likely to be more (not less) salient in these conditions. Note, therefore, that this pattern cannot be explained without reference to motivational processes, as exposure to sexism should actually increase the cognitive salience of gender stereotypes, resulting in more bias when participants are exposed to sexism than when they are not. The argument here is, therefore, that exposure to sexism might reduce implicit bias by providing individuals with sufficient motivation to disprove sexist stereotypes.

Although motivations to disprove sexist stereotypes have not been examined in past research, prior research has investigated how people respond when they are exposed to information about traditional gender roles. This has revealed that such descriptive gender normative information can have a variety of effects: In some cases, it can increase gender stereotype bias (Rudman & Phelan, 2010) and induce stereotype threat (Davies, Spencer, Quinn, & Gerhardtstein, 2002), but in other cases, it can also decrease gender stereotype bias (e.g., de Lemus, Spears, Bukowski, Moya, & Lupianez, 2013). Importantly, these prior investigations primed gender roles in a purely descriptive manner (i.e., with TV commercials or photographs of men and women in stereotypical occupations). Gender role depictions are, however, ambiguous: They can be interpreted as communicating the appropriateness of gender roles, but they can also be interpreted as caricatures and expressions of disapproval. Sexist statements are different: They provide clarity about people’s beliefs and are strongly prescriptive, in that they communicate the conviction that men and women should comply with traditional gender roles (e.g., Burgess & Borgida, 1999; Fiske & Stevens, 1993). As such, the results of prior work are not entirely relevant to understand or predict how implicit gender stereotype bias is affected when people are exposed to sexist views, which is the focus of the current research. In addition, previous work did not examine the processes through which exposure to sexism affects stereotype associations. The present research therefore also extends previous knowledge by using process modeling to understand how exposure to sexist beliefs may impact on gender stereotypical associations.

To examine our hypothesis, we measured participants’ implicit gender stereotype bias after exposure to sexist beliefs and compared this with when participants were not exposed to sexism. In addition, whilst prior research examined gender stereotypical associations as a function of exposure to traditional gender roles in comparison with control conditions, we take on board knowledge that sexism is expressed in multiple ways and compare the effects of two types of sexism. We therefore included two experimental conditions: exposure to hostile sexism and exposure to benevolent sexism (Glick & Fiske, 1996, 2001). Because both forms of sexism are based on the same gender stereotype of women as warm but incompetent, we did not expect to find differences across these two sexism conditions, but this method allowed us to test for this possibility. In addition, we separately examined responses from female and male participants. Although women are more likely to be motivated than men to reject sexist views, it is possible that similar motives, as well as others, drive men to also reduce their gender stereotype bias when exposed to sexism (e.g., heightened vigilance so as not to appear biased; Devine et al., 2002; Montetith, Lybarger, & Woodcock, 2009; Van Nunspeet et al., 2014). Given the dearth of research on men’s responses to sexism targeting women, we did not make specific predictions regarding men’s implicit gender stereotype bias.
In two experiments, we exposed male and female participants to sexism (either hostile or benevolent sexist beliefs) or no sexism. In Experiment 1, we measured gender stereotype bias with an Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998). In Experiment 2, we sought a more nuanced understanding of the pattern of gender stereotype bias by using a Go/No-go Association Task (GNAT; Nosek & Banaji, 2001). In both experiments, we predicted that female participants who were exposed to sexism would display less gender stereotype bias than women who were not exposed to sexism. We had no specific predictions for male participants.

Experiment 1

Method

Design and Participants. A total of 55 male and 60 female participants (age 17–35, M = 21.29, SD = 3.18) were randomly and equally assigned to three exposure conditions: no sexism versus benevolent sexism (BS) versus hostile sexism (HS).

Procedure. University students were invited to the laboratory where they were asked to perform a memory task. They observed, memorized and later recalled the association between six photos and sentences (procedure adapted from Dasgupta & Asgari, 2004; Study 1). The photos portrayed men and women interacting with each other, and the sentences were derived from Glick and Fiske’s (1996) Ambivalent Sexism Inventory (in the sexism conditions) or created for this study (no sexism condition; please see Appendix for the full wording of the items used). In the BS condition, participants read sentences from the benevolent sexism subscale (e.g., ‘No matter how accomplished he is, a man is not truly complete without the love of a woman’); in the HS condition, participants read sentences from the hostile sexism subscale (e.g., ‘Most women interpret innocent remarks or acts as being sexist’). In the no sexism condition, participants saw photos of flowers and a short description of their names and origin (e.g., ‘Water lilies are aquatic plants that can often cut the flow of water’).

After this task, participants were invited to participate in an ostensibly separate study involving the assessment of learning abilities. This corresponded to an IAT with seven blocks (Greenwald, Nosek, & Banaji, 2003) with male and female names as target categories, and words related to competence and warmth as attribute categories. Gender stereotypes are structured around the perception that men are particularly competent whereas women are predominantly warm (Eagly & Mladinic, 1989; Eagly & Steffen, 1984; Fiske, Cuddy, Glick, & Xu, 2002; Langford & MacKinnon, 2000). Thus, this IAT allows us to examine the extent to which participants hold implicit gender stereotype bias (Ebert, Steffens, & Kroth, 2014). In the IAT’s congruent blocks, participants were instructed to use one response key for male names and words related to competence, and another response key for female names and words related to warmth. In incongruent blocks, this pattern was reversed such that female names were paired with competence attributes and male names with warmth attributes. Practice blocks (1, 2, 3, 5 and 6) consisted of 20 trials each, whilst test blocks (4 and 7) included 40 trials per block. Each stimulus was presented on the computer screen until participants provided their response. There was a 150-millisecond interval between each stimulus. Within each block, stimuli were randomly selected without replacement and no more than two consecutively presented stimuli belonged to the same category (Greenwald et al., 1998). Names were presented in white font, whilst stereotypical attributes were presented in green font (against a black background). The order of congruent and incongruent blocks was counterbalanced.

Stimuli for the IAT were selected according to two pilot studies examining their typicality (as indicators of competence and warmth) and valence. In the typicality pilot study, 42 participants (20 women) rated the extent to which each attribute (from a list of 220 attributes commonly used in stereotype research) was seen in Portuguese society as typically masculine or feminine. All attributes were rated in 7-point scales, from (1) (typically masculine) to (7) (typically feminine) with the midpoint labelled as neither masculine nor feminine. In the subsequent valence pilot study, 40 participants (23 women) were presented with the attributes that had been judged as most stereotypical and rated the valence of each attribute. The eight attributes that were considered most typically feminine were affectionate, gentle, considerate, understanding, kind, friendly, good and warm (in the original Portuguese materials, these were afectuoso, atencioso, compreensivo, afável, amável, bondoso and carinhoso). The eight most typically masculine attributes were confident, practical, competitive, active, determined, objective, reliable and leader (original Portuguese: confiante, prático, competitivo, activo, determinado, objetivo, seguro e líder). Stereotypical male attributes were rated as slightly less positive than stereotypical female attributes among women and slightly more positive among men. Although not ideal, this difference in valence is common in gender stereotype research (Rudman, Greenwald, & McGhee, 2001) and was deemed unproblematic because our focus was to examine stereotype associations across conditions. As also observed in past research, whilst female stereotypical attributes generally tapped onto the warmth dimension, male stereotypical attributes reflected competence. Accordingly, the attributes included in the IAT were labelled as warmth and competence. The target stimuli included in the IAT comprised male and female names, in
Portland, that were of similar size and familiarity (e.g., male names: João, Paulo and Mário; female names: Sara, Joana and Maria).

Results and Discussion

Data Screening. In line with standard guidelines to analyse IAT data (Greenwald et al., 2003), we eliminated all trials with latencies greater than 10,000 milliseconds (there were 22 trials) and data from all participants for whom more than 10% of trials had response latencies lower than 300 milliseconds (there were three participants in this situation). To calculate D scores, we computed the difference in reaction times on incongruent and congruent trials divided by a pooled standard deviation of all trials for each participant. Higher D scores thus represent stronger implicit gender stereotype bias.

IAT Analysis. D scores were analysed with an analysis of variance with participants’ gender and sexism exposure as between-participant factors. This revealed no reliable main effects of participants’ gender, $F(1, 109) = 0.25, p = .616$, $\eta^2_p = 0.002$, or of sexism exposure, $F(2, 109) = 0.21, p = .822$, $\eta^2_p = 0.004$. However, a reliable interaction emerged, $F(2, 109) = 3.41, p = .037, \eta^2_p = 0.059$ (Figure 1). To test our predictions, we conducted planned comparisons between the no sexism condition (weight = 2) and the two sexism conditions (weights of −1 for each BS and HS condition). These analyses showed that women had weaker gender stereotype bias when they were exposed to sexist beliefs ($M_{BS} = 0.27; SD = 0.36$ and $M_{HS} = 0.27; SD = 0.39$) than when they were not ($M = 0.53; SD = 0.30$), $F(1, 109) = 5.21, p = .024, \eta^2_p = 0.046$. For men, there were no differences between the no sexism ($M = 0.28; SD = 0.47$) and the sexism conditions ($M_{BS} = 0.50; SD = 0.49$ and $M_{HS} = 0.42; SD = 0.45$), $F(1, 109) = 2.06, p = .154, \eta^2_p = 0.019$.1

In sum, consistent with predictions, women showed weaker gender stereotype bias when exposed to benevolent or hostile sexist beliefs than following no exposure to sexism. Gender stereotype bias among men did not vary across conditions. This pattern of results supports our hypothesis that women reduce stereotypic gender bias when they are exposed to sexism as a response against sexist views.

1We also performed multiple comparisons between the three different conditions. Results showed that women displayed weaker stereotype bias when exposed to BS ($M = 0.28; SD = 0.34$) than to the no sexism condition ($M = 0.53; SD = 0.30$), $F(1, 109) = 4.09, p = .046, \eta^2_p = 0.036$. Women’s bias was also weaker in the HS condition ($M = 0.27; SD = 0.39$) than in the no sexism condition, $F(1, 109) = 3.92, p = .050, \eta^2_p = 0.032$. There were no differences between the BS and HS conditions, $F(1, 109) = 0.01, p = .961, \eta^2_p < 0.001$.

Experiment 2

Experiment 2 aims to further specify how exposure to sexism reduces women’s implicit gender stereotype bias by examining whether it strengthens the relationship between women and competence, weakens the relationship between women and warmth, or both. To do so, we used a GNAT (Nosek & Banaji, 2001), which allows us to make orthogonal comparisons on the dimensions of interest (i.e., male–competence, male–warmth, female–competence and female–warmth), rather than relying on the inherently relative IAT D score. Also, we modified the no sexism condition from Study 1 to exclude the possibility that flowers, which are more stereotypically related to women than men, had influenced responses in the no sexism condition. As such, the stimuli for the no sexism condition in Experiment 2 consisted of photos of keys to different locks.

To shed light on the processes underlying participants’ responses to sexism, we drew on the quadruple process model (Quad model: Conrey et al., 2005; Sherman et al., 2008), which is designed to estimate the contribution of four qualitatively distinct processes to responses on implicit measures of bias (for a review, see Calanchini & Sherman, 2013)2. The four processes specified by the Quad model are the activation of biased associations (association activation (AC)), the ability to determine the correct response (detection (D)), the ability to overcome biased associations when they conflict with the correct response (overcoming bias (OB)) and other types of bias that guide responses in the absence of other available guides to responding (guessing (G)).

2We could not perform a similar analysis in Experiment 1 because in that study the error rates were not recorded. This does not threaten the validity of the analysis reported. Experiment 1 was designed so that participants had to provide a correct response after any error. The analyses examine the total latency required to achieve a correct response, which has been found to be an equivalent alternative to the Greenwald et al. (2003) improved algorithm (see Table 4, Greenwald et al., 2003).
AC represents mental associations (e.g., stereotypes and attitudes) activated by the specific stimuli of a given implicit measures. In contrast, D and OB reflect domain-general accuracy-oriented and inhibitory processes, respectively, which constrain activated associations from influencing responses (Calanchini, Sherman, Klauer, & Lai, 2014). Finally, the G parameter, which represents G biases that drive responses when neither AC nor D is activated, is not necessarily random but, instead, may be quite strategic, such as a general positivity bias or a preference for stimuli on one side of the display (Conrey et al., 2005; Nisbett & Wilson, 1977). In line with our argument, we expected exposure to sexism would motivate women to disconfirm gender stereotypes. Given that mental associations such as stereotypes are assumed to be activated unintentionally upon exposure to a relevant stimulus (Bargh, 1999), we expected that reactions against sexism would influence one of the non-associative processes that contribute to responses—D, OB or G—although we had no firm predictions regarding which of these processes would be influenced.

Method

Design and Participants. A total of 76 male and 92 female participants (age 18–31, M = 20.50, SD = 2.37) were randomly assigned to one of three conditions: no sexism versus benevolent sexism versus hostile sexism.

Procedure. The procedure was the same as in Experiment 1, but in this study, the no sexism condition consisted of six pictures of keys to different locks accompanied by related sentences (e.g., ‘Despite not revealing to whom it belongs, each key always has a story to tell’). Participants responded to a GNAT using the same attributes as in Experiment 1. Competence and warmth attributes appeared twice as frequently as male and female names (Nosek & Banaji, 2001). Participants were asked to indicate the presence of a specific target concept or pairs of concepts with a keyboard press and to withhold responses to all other stimuli. The GNAT included six blocks and followed Nosek and Banaji’s (2001) guidelines: (i) initial target-concept discrimination (i.e., pressing a key only if male names are shown; pressing a key only if female names are shown), (ii) attribute discrimination (i.e., pressing a key only if warmth attributes are shown; pressing a key only if competence attributes are shown), (ii) first combined task (female counter-stereotypical: pressing a key only if female names or competence attributes are shown), (iv) second combined task (female stereotypical: pressing a key only if male names or warmth attributes are shown), (v) third combined task (male counter-stereotypical: pressing a key only if male names or competence attributes are shown) and (vi) fourth combined task (male stereotypical: pressing a key only if male attributes or competence attributes are shown). Half of the participants followed this block order, whilst the other half responded to the stereotypical block first and then the counter-stereotypical block. Practice blocks (1 and 2) consisted of 20 trials each, whilst test blocks (3, 4, 5 and 6) comprised 20 practice trials and 50 test trials (in each block). In all blocks, the distracter items were items from a non-matching concept (e.g., a competence attribute when participants were prompted to press a key every time they saw a warmth attribute). Following the procedures recommended by Nosek and Banaji (2001), participants responded to the six blocks with a response deadline of 1000 milliseconds and then again to the same blocks with a faster response deadline of 833 milliseconds. The response deadlines for target trials were twice those for distracter items such that participants had 1000- and 833-
millisecond deadlines for the distracter items and 2000- and 1666-millisecond deadlines for the target trials. In all trials, there was a 150-millisecond interstimulus interval.

Note that the response deadlines chosen for this study correspond to those recommended by Nosek and Banaji (2001) as appropriate for analyses of response times. Nosek and Banaji (2001, Experiment 5) concluded that examining sensitivity (i.e., based on response accuracy) or reaction times produces identical results. We elected to first analyse response times in order to maintain consistency and enable comparison with Experiment 1 (where an IAT with response times was used), but we also utilized response accuracy for the process analyses.

Results and Discussion

Data Screening. In line with recommendations to analyse the GNAT (Nosek & Banaji, 2001), response latencies lower than 200 milliseconds were removed (there were 465 trials in this situation), and data from participants who had an error rate greater than 40% were deleted (there was only one participant with a 40% error rate).

GNAT Analysis. All responses to distracter trials were excluded, and the analyses reported correspond to the reaction times of the correct responses in ‘go’ trials. Analyses of response latencies followed a 3 (exposure: no sexism vs. BS beliefs vs. HS beliefs) × 2 (participant gender: male vs. female) × 2 (target gender: male vs. female) × 2 (dimension: competence vs. warmth) analysis of variance with repeated measures on the last two factors. Results revealed a reliable main effect of dimension, $F(1, 161) = 20.95, p < .001, \eta^2_p = 0.061$, and two-way interactions between dimension and target gender, $F(2, 161) = 12.82, p < .001, \eta^2_p = 0.038$, and between dimension and sexism exposure, $F(2, 161) = 5.48, p = .005, \eta^2_p = 0.033$. There was also a four-way interaction between sexism exposure, participant gender, target gender and dimension, $F(2, 161) = 5.13, p = .006, \eta^2_p = 0.031$. We decomposed the four-way interaction by examining lower order effects per dimension.

Effects on Competence. A 3 (sexism exposure: no sexism vs. BS vs. HS) × 2 (participant gender: male vs. female) × 2 (target gender: male vs. female) was conducted on response times for competence judgments. Results showed a reliable main effect of target gender, $F(1, 161) = 5.29, p = .022, \eta^2_p = 0.016$, and a reliable interaction between participant gender and sexism exposure, $F(2, 161) = 7.91, p < .001, \eta^2_p = 0.047$. Both effects were qualified by a reliable three-way interaction between participant gender, target gender and sexism exposure, $F(2, 161) = 4.17, p = .016, \eta^2_p = 0.025$ (Figure 2). As in Experiment 1, the three-way interaction was first examined for women and then for men.

To test our hypotheses, we performed planned comparisons contrasting the no sexism condition (weight = 2) with the two sexism conditions (weighted as -1 each). Consistent with Experiment 1, t-tests showed that when women were exposed to sexist beliefs, they displayed less stereotype bias. Specifically, women responded more quickly when female names and competence words shared a response key (MBS = 736 milliseconds; SD = 105.83 and MHS = 784 milliseconds; SD = 101.41) than when they were not exposed to sexism (M = 818 milliseconds; SD = 118.46), $t(92) = 5.93, p = .017, \eta^2_p = 0.062$. Additionally, when women were not exposed to sexist beliefs, they responded more quickly when competence words shared a response key with male names (M = 745 milliseconds, SD = 108.94) than with female names (M = 818 milliseconds, SD = 118.46; $F(1, 161) = 5.13, p = .024, \eta^2_p = 0.016^3$). However, when exposed to sexist beliefs, women responded equally quickly when competence words shared a response key with male and female names, $t(161) = 0.35, p = .792, \eta^2_p < 0.001$.

For male participants, planned comparisons contrasting the no sexism condition (M = 740 milliseconds;

| Table 1. Quad model estimated parameters for male and female participants |
|-----------------------------|-----------------------------|-----------------------------|
| Male participants | Female participants |
| No sexism | Sexism | No sexism | Sexism |
| FAC | 0.00 [0.02] | 0.00 [0.02] |
| MAC | 0.02 [0.02] | 0.03 [0.01] |
| D | 0.86 [0.01] | 0.88 [0.01] |
| OB | 1.00 [2.08] | 1.00 [0.95] |
| G | 0.57 [0.04] | 0.51 [0.04] |
| Note: Standard errors are in brackets. FAC = female–warmth associations, MAC = male–competence associations, D = detection, G = guessing, OB = overcoming bias. |
$SD = 128.15$ against the sexism conditions ($M_{BS} = 780$ milliseconds; $SD = 123.00$ and $M_{HS} = 707$ milliseconds; $SD = 127.95$) revealed no reliable effects, $F(1, 161) = 0.22, p = .883, \eta^2_p < 0.001$.

Effects on Warmth. The same analyses were performed on responses to warmth trials. No reliable effects emerged: main effects of sexism exposure, $F(2, 161) = 0.53, p = .589, \eta^2_p = 0.003$, target gender, $F(1, 161) = 0.88, p = .350, \eta^2_p = 0.003$, and participant gender, $F(1, 161) = 0.04, p = .837, \eta^2_p < 0.001$. There were no reliable interactions between sexism exposure and target gender, $F(2, 161) = 0.08, p = .928, \eta^2_p < 0.001$, between target gender and participant gender, $F(1, 161) = 0.12, p = .731, \eta^2_p < 0.001$, and between sexism exposure, target gender and participant gender $F(2, 161) = 0.46, p = .630, \eta^2_p = 0.003$ (Figure 3).

Note that the difference in p values between men and women is not an indication that the model fits the data better for women. Chi-square analyses are dependent on sample size, and we had slightly unequal sample sizes (in this context sample size, refer to the number of responses in the analysis: 13 393 for men and 16 189 for women). For this reason, we should rely on the w statistic, which represents an effect size for chi-square analyses. This statistic controls for sample size and reveals identical effect sizes for men and women, suggesting that the model fits the data equally well for both sexes.

As we did with the follow-up GNAT response latency analyses reported in footnote 2, we also performed follow-up Quad model analyses with BS and BS separately for a more detailed description of our results. Female participants who were exposed to BS had stronger D ($M = 0.89$) than female participants in the no sexism ($M = 0.80$) condition, $\Delta \chi^2 = 58.03, p < .001, w = 0.07$, as well as female participants who were exposed to HS ($M = 0.84$), $\Delta \chi^2 = 23.52, p < .001, w = 0.05$. Female participants who were exposed to HS also had stronger D than female participants in the no sexism condition, $\Delta \chi^2 = 6.65, p = .01, w = 0.03$. Female participants who were exposed to BS had lower G ($M = 0.39$) than male participants in the no sexism ($M = 0.52$) condition, $\Delta \chi^2 = 9.29, p = .002, w = 0.03$, as well as female participants who were exposed to HS ($M = 0.50$), $\Delta \chi^2 = 6.26, p = .01, w = 0.02$. However, exposure to HS did not influence female participants’ G relative to control, $\Delta \chi^2 = 0.20, p > .10$. Exposure to BS marginally increased female participants’ FAC ($M = 0.04$) relative to both the no sexism ($M = 0.01$), $\Delta \chi^2 = 3.26, p = .07, w = 0.02$, and HS ($M = 0.01$) conditions, $\Delta \chi^2 = 3.33, p = .07, w = 0.02$. However, exposure to HS did not influence female participants’ FAC relative to no sexism condition, $\Delta \chi^2 < 0.01, p > .96, w < 0.01$. Female participants’ MAC and OB did not vary across BS, HS and no sexism conditions, all $\Delta \chi^2 < 0.83, ps > .36, ws < 0.01$. Male participants who were exposed to BS had stronger D ($M = 0.90$) than male participants in the no sexism ($M = 0.86$) condition, $\Delta \chi^2 = 10.65, p = .001, w = 0.03$, as well as male participants who were exposed to HS ($M = 0.85$), $\Delta \chi^2 = 11.88, p < .001, w = 0.04$. However, exposure to HS did not influence male participants’ D relative to the no sexism condition, $\Delta \chi^2 = 0.46, p < .50, w < 0.01$. Male participants who were exposed to BS had lower G ($M = 0.45$) than male participants in the no sexism ($M = 0.57$) condition, $\Delta \chi^2 = 7.25, p = .007, w = 0.03$, as well as male participants who were exposed to HS ($M = 0.57$), $\Delta \chi^2 = 5.81, p = .02, w = 0.03$. However, exposure to HS did not influence male participants’ G relative to the no sexism condition, $\Delta \chi^2 = 0.20, p = .65, w < 0.01$. Male participants’ FAC, MAC and OB did not vary across BS, HS and no sexism conditions, all $\Delta \chi^2 < 2.74, ps > .10, ws < 0.02$. Taken together, these follow-up analyses provide a more nuanced understanding of the process-level effects of the sexism manipulations than is reported in the main body of the paper. Overall, these analyses suggest that the BS manipulation had a larger effect than the HS manipulation; that the effect of the HS manipulation sometimes differed from the no sexism condition and sometimes did not; and that both sexism manipulations had larger effects on women than on men.

Process Analysis. We applied the Quad model to these data according to Sherman et al. (2008) by estimating parameters for AC, D, OB and G based on the number of correct and incorrect responses on the GNAT. Two separate AC parameters were estimated: One measuring the extent to which associations between female and warmth (FAC) were activated in performing the task and another measuring the extent to which associations between male and competence (MAC) were activated. The G parameter is anchored at .5 (i.e., no bias) and was coded so that scores greater than .5 represent a tendency for responses that favour competence over warmth (i.e., a ‘go’ response on a trial, which included competence as target category; a ‘no go’ response on a trial, which included warmth as a target category) and scores less than .5 represent a tendency for responses that favour warmth over competence (i.e., a go response on a trial, which included warmth as target category; a no-go response on a trial, which included competence as a target category). Given that we expected different results for women and men, we divided the data by participant gender and performed separate analyses (see Table 1 for parameter estimates).

The overall error rate for female participants on the GNAT was 8.2% and the Quad model fits the data well, $\chi^2(df = 1) = 10.15, p = .12, w = .03$. Female participants’ accuracy-oriented D increased following exposure to sexism ($M = 0.87$) relative to the no sexism condition ($M = 0.80$), $\Delta \chi^2 = 37.61, p < .001, w = .05$. Additionally, exposure to sexism biased female participants’ responses (G) towards warmth judgments and away from competence judgments ($M = 0.45$) relative to the no sexism condition ($M = 0.52$), $\Delta \chi^2 = 4.16, p = .04, w = .02$. However, exposure to sexism had no influence on female participants’ activation of female-warmth (FAC) or male-competence (MAC) stereotypic associations, or their ability to overcome those biased associations (OB), all $\Delta \chi^2 s < 1.34, ps > .24, ws < 0.01$.

The overall error rate of male participants on the GNAT was 6.9% and the Quad model fits the data well, $\chi^2(df = 1) = 12.33, p = .06, w = .03$. None of male participants’ Quad parameter estimates differed across sexism and control conditions, all $\Delta \chi^2 s < 2.43, ps > .11, ws < 0.01$.

The results of Experiment 2 replicate those of Experiment 1: Women exposed to sexist beliefs subsequently demonstrated decreased implicit gender stereotype bias, but men did not. Experiment 2 also provides insight into why women’s bias decreases in response to sexism. When exposed to sexism versus not exposed, women respond more quickly when female names are paired with words related to competence but do not change their responses to words related to warmth. As such,
appears that women do not reject stereotypes favourable to women (warmth) but assert women’s qualities in the dimension in which they are stereotypically portrayed as inferior to men (competence). This study also enables us to specify the process underlying this pattern of responses. Indeed, application of the Quad model revealed that exposure to sexism increases women’s accuracy-oriented D and, in the absence of any other guides to response, biases their responses towards warmth judgments and away from competence judgments.

General Discussion

Across two experiments, we investigated whether exposure to sexism can reduce implicit gender stereotype bias. When exposed to sexist beliefs, women but not men showed decreased implicit gender stereotype bias relative to a no sexism condition. Moreover, exposing women to sexism increased the speed with which they responded to female/competence pairings, increased their accuracy orientation and biased their responses in a way that favoured warmth over competence.

Our findings build on prior research demonstrating the malleability of implicit stereotype bias (e.g., Blair & Banaji, 1996; Blair et al., 2001), as well as research showing that women are motivated to disconfirm gender stereotypes (e.g., Becker & Wright, 2011; de Lemus et al., 2013; Ellemers & Barreto, 2009; Spears, Jetten, & Doosje, 2001). However, prior research had not yet examined whether exposure to sexism was sufficient to motivate reduced implicit gender stereotype bias. We therefore extend prior work by additionally showing that women may modify their implicit gender stereotype bias when exposed to different types of sexist statements.

It is important to note that this pattern of results can only be explained by reference to individual motivation. A priori, we expected that women and men would react to sexist statements differently, given that men do not suffer the same deleterious consequences of sexism as women and, therefore, do not have the same motivation to disconfirm gender stereotypes. Moreover, these results support a motivational explanation because a cognitive salience explanation would lead to the opposite pattern of results. Indeed, if sexist statements increased the cognitive salience of gender stereotypes, then we would expect greater rather than less implicit gender bias. However, women who were exposed to sexism actually demonstrated less implicit gender bias. Process modelling supports these conclusions by demonstrating that exposure to sexism did not increase the activation of stereotypic associations (FAC and MAC) but, instead, increased an accuracy-oriented control process (D) and changed women’s response tendencies (G). The effects we found with the D parameter among women were relatively large, which further suggests that the effect of sexism on bias was primarily driven by increasing accuracy-oriented D. In other words, reduced gender bias following exposure to sexism appears not to be related to changes in the activation of biased stereotypic associations but, rather, is the result of other non-associative processes that drive responses. D is a domain-general process that is associated with activity in brain areas, which are generally associated with control and can reflect how motivated a person is to perform well on a given task (Beer et al., 2008; Calanchini et al., 2014; Sherman et al., 2008). In contrast, G is a domain-specific process that guides responses when biased associations (i.e., stereotypes) are not activated and the correct answer is not detected (Calanchini et al., 2014). The curious reader may wonder why exposure to sexism did not also increase...
women’s ability to overcome biased associations (OB). One possible explanation is mathematical: The OB parameter is estimated from fewer trials in the Quad model than the AC, D and G parameters, and this relative lack of reliability sometimes makes it challenging to detect between-person or between-group differences on OB (although this is not always the case; for a review, see Calanchini & Sherman, 2013). Another possible explanation for why exposure to sexism did not increase women’s OB is because exposure to sexism did not increase the activation of female–competence or male–warmth stereotypes. Given that sexism did not make biased associations more salient, perhaps there was simply no need to overcome them.

Taken together, the present research contributes to existing knowledge by clarifying the conditions under which individuals who are targeted by gender stereotypes are likely to react against them, and the mechanisms by which they might do so. We expected and showed that women are less likely to react against gender stereotypes when they have not been recently exposed to sexist beliefs. Perhaps ironically, this suggests that women who are chronically exposed to sexism are more motivated to disprove gender stereotypes than women who do not regularly encounter sexism.

Prior work has suggested that changing gender stereotypes is particularly hard because such stereotypes involve a trade-off for women, who can be perceived as either competent or warm (Cuddy, Fiske, & Glick, 2004). However, Experiment 2 indicates that this is not always necessarily the case: Our female participants adjusted their responses when women were associated with competence but maintained their responses when women were associated with warmth. This further underscores the motivational, and perhaps even strategic, nature of these responses. That is, women reduced implicit gender stereotype bias by changing how they respond when their gender is associated with a dimension on which they are seen as stereotypically inferior (competence) without yielding their superiority on a dimension that favours them (warmth). This resonates with past research conducted with explicit measures. Even though women often seek to be perceived as competent because with competence comes status, power and resources (Fiske et al., 2002; see, for reviews Fiske, 2010; Fiske, Cuddy, & Glick, 2007), they also tend to associate themselves with warmth (Rudman et al., 2001) and are often reluctant to shed perceptions of warmth (Rudman & Killamski, 2000).

Challenging sexism by adjusting implicit gender stereotype bias has important implications for women in a variety of contexts. For example, research has shown that exposure to subtle gender stereotypes can impair women’s performance on tasks in which they are deemed stereotypically inferior (Spencer, Steele, & Quinn, 1999). Our findings suggest that this is not inevitable because women can challenge even stereotypes to which they are exposed in subtle ways. Also, women can do so by adjusting their implicit biases, which in turn have been closely linked to task performance (Levy, 2003), placing them in a good position to disprove gender stereotypes.

Although women were influenced by exposure to sexism, sexism had no influence on men’s implicit gender stereotype bias. One reason for this apparent null effect might be that men, as the dominant group, are less motivated to disprove gender stereotypes that favour them. Because it does not target them directly, men are less likely to be vigilant about sexism and the contextual cues presented in our studies. Another possible explanation for men’s lack of response to exposure to sexism is that, as the dominant group, men may be generally more chronically concerned with being seen as prejudiced (Vorauer, Hunter, Main, & Roy, 2000; Vorauer & Kumhyr, 2001) and, therefore, may learn to control their biased responses across a variety of contexts. Even though men’s responses were relatively biased across all conditions, they may have still been as controlled as possible, leaving little opportunity for further monitoring when they were exposed to sexist beliefs. Future research might further distinguish between these possibilities.

Finally, in these studies, women responded similarly when exposed to benevolent sexism and hostile sexism. This is not surprising, given that benevolent and hostile sexism overlap substantially, correlate positively across gender and cultural groups and work in tandem to communicate the same ideal view of women (Glick & Fiske, 1996, 2001; Glick et al., 2000). Nevertheless, the fact that women demonstrated reduced implicit gender bias in response to benevolent sexism extends previous research, which has shown that women have difficulty objecting to benevolent sexism (Barreto & Ellemers, 2005; Becker & Wright, 2011). Specifically, our data suggest that despite the prior finding that it is hard to object to benevolent (versus hostile) sexism, women are able to challenge these beliefs by adapting (i.e., reducing) their stereotype bias. Indeed, the fact that exposure to BS reduces women’s self-confidence and can impair their task performance (e.g., Dardenne, Dumont, & Bollier, 2007) suggests that women might be motivated to also dispute BS. Our research shows that this happens at least at the level of stereotype associations.

This research demonstrates that whilst women can demonstrate gender stereotype bias, they are less likely to do so when reminded of sexist beliefs. Understanding how sexism might affect gender stereotype bias has potential implications for prejudice reduction interventions. Future research might investigate whether additional information, for example, about the pervasiveness of sexism, affects implicit and explicit stereotyping. It would also be fruitful for future research to examine how the observed changes in gender stereotype bias following from sexism exposure may further motivate behavioural changes and how lasting these effects might be. Regardless, this research has taken us a step further in understanding contexts where, and ways in which, women resist sexism.
Acknowledgement

This research was supported by a grant from the Portuguese Foundation for Science and Technology (PTDC/PSI-PSO/120015/2010) awarded to the second author.

References

Appendix

Benevolent sexism sentences (Experiments 1 and 2)
No matter how accomplished he is, a man is not truly complete as a person unless he has the love of a woman.
Many women have a quality of purity that few men possess
Women should be cherished and protected by men.
Every man ought to have a woman whom he adores.
A good woman should be set on a pedestal by her man.
Women, compared with men, tend to have a superior moral sensibility.

Hostile sexism sentences (Experiments 1 and 2)
Most women interpret innocent remarks or acts as being sexist.
Women are too easily offended.
Most women fail to appreciate fully all that men do for them.
Women seek to gain power by getting control over men.
Women exaggerate problems they have at work.
When women lose to men in a fair competition, they typically complain about being discriminated against.

No sexism sentences (flowers; Experiment 1)
Water lilies are aquatic plants that can often cut the flow of water.
The wax plant bloom is formed by a star-shaped flower that looks as if it was made of wax or porcelain.
Tulips are thought to originate from Turkey and have a special meaning in the Netherlands.
Daisies may be used for tea such as chamomile.
Pagans worshiped the roses and believed in their mysticism according to the colour they displayed.
This flower’s name comes from the mythological character Narcissus.

No sexism sentences (Keys; Experiment 2)
Despite not revealing to whom it belongs, each key always has a story to tell.
The key is an essential object in people’s lives.
With so many models to choose from, keys can represent a personal taste.
Inspired in horror movies, the old style key is more easily associated with paranormal activity.
Owing to their design, some keys can have a very exquisite look.
People need this object in their lives.